9/13/2021
12

This page in versions:

Go to menu Tools - Choose Toolbox Items.NET Framework Component, click Browse to navigate to 'DynamicDotNetTWAIN.dll' in the installation folder of Dynamic.NET TWAIN. Then you will see DynamicDotNetTwain in the components list.

If you have finished the development with the trial version, please simply replace the license key with the one sent in the email along with the installer. Below is a sample code for inserting the keys:

Dll

If you are new to Dynamic .NET TWAIN, please install it from the installer in the email and follow the guide in {installation folder}DocumentationDynamic .NET TWAIN 7 Developer's Guide.pdf and create the application.

I'm trying to modify the jni4net sample code MyCSharpDemoCalc, and make the sample as a bridge between a.Net DLL and the Java layer. Here is the C# code: using System; using Dynamsoft.DotNet.TWAI. 运行 generateProxies.cmd. 参考原文: Java TWAIN with Dynamic.NET TWAIN and jni4net. 在C#工程中添加引用 DynamicDotNetTWAIN.dll. 初始化Dynamic.NET TWAIN组件.

  1. [Optional]Remove the old version of Dynamic .NET TWAIN through Control Panel -> Uninstall a program
  2. [Optional]Install the new version.2 options to get the latest installer of Dynamic .NET TWAIN.
    • Option#1: Get an installer from downloading a 30-day free trial version.
    • Option#2: Once your upgrade request is processed, our sales team will send you the intaller's download link along with the new license keys via email.
  3. License your app via code
  1. Update the DLL in Visual Studio after opening the app.
    NOTE: In Solution Explorer, expand Refrences -> right-click DynamicDotNetTWAIN -> Properties, and you will see the path there.
  2. Rebuild the solution.
  3. Go to the bin folder of your solution and verify the modification date of the DLL to see if it's using the new one. You can also right-click the dll, click Properties -> Details tab to check its version number. If it's still the old one, please delete the DLL in VS and Rebuild.

If you need any assistance or have any problem, please feel free to contact us.

From v7.0,the SDK has been completely re-constructed and separated into a few independent modules. Therefore, this new version is very different from any previous version. If you are upgrading from v4.x/5.x/6/x to v7.x, we would suggest that you refer to the v7 Developer's Guide and start from scratch.
Please refer to http://kb.dynamsoft.com/questions/567/How+to+upgrade+Dynamic+.NET+TWAIN+to+the+latest+version%3F.
-->

A system can contain multiple versions of the same dynamic-link library (DLL). Applications can control the location from which a DLL is loaded by specifying a full path or using another mechanism such as a manifest. If these methods are not used, the system searches for the DLL at load time as described in this topic.

  • Search Order for UWP Apps
  • Search Order for Desktop Applications

Dynamic Dotnet Twain Dll Download

Factors That Affect Searching

The following factors affect whether the system searches for a DLL:

  • If a DLL with the same module name is already loaded in memory, the system checks only for redirection and a manifest before resolving to the loaded DLL, no matter which directory it is in. The system does not search for the DLL.
  • If the DLL is on the list of known DLLs for the version of Windows on which the application is running, the system uses its copy of the known DLL (and the known DLL's dependent DLLs, if any) instead of searching for the DLL. For a list of known DLLs on the current system, see the following registry key: HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlSession ManagerKnownDLLs.
  • If a DLL has dependencies, the system searches for the dependent DLLs as if they were loaded with just their module names. This is true even if the first DLL was loaded by specifying a full path.

Search Order for UWP apps

When a UWP app for Windows 10 (or a Store app for Windows 8.x) loads a packaged module by calling the LoadPackagedLibrary function, the DLL must be in the package dependency graph of the process. For more information, see LoadPackagedLibrary. When a UWP app loads a module by other means and does not specify a full path, the system searches for the DLL and its dependencies at load time as described in this section.

Before the system searches for a DLL, it checks the following:

  • If a DLL with the same module name is already loaded in memory, the system uses the loaded DLL, no matter which directory it is in. The system does not search for the DLL.
  • If the DLL is on the list of known DLLs for the version of Windows on which the application is running, the system uses its copy of the known DLL (and the known DLL's dependent DLLs, if any). The system does not search for the DLL. For a list of known DLLs on the current system, see the following registry key: HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlSession ManagerKnownDLLs.

If the system must search for a module or its dependencies, it always uses the search order for UWP apps even if a dependency is not UWP app code.

Standard Search Order for UWP apps

If the module is not already loaded or on the list of known DLLs, the system searches these locations in this order:

  1. The package dependency graph of the process. This is the application's package plus any dependencies specified as <PackageDependency> in the <Dependencies> section of the application's package manifest. Dependencies are searched in the order they appear in the manifest.
  2. The directory the calling process was loaded from.
  3. The system directory (%SystemRoot%system32).

If a DLL has dependencies, the system searches for the dependent DLLs as if they were loaded with just their module names. This is true even if the first DLL was loaded by specifying a full path.

Alternate Search Order for UWP apps

If a module changes the standard search order by calling the LoadLibraryEx function with LOAD_WITH_ALTERED_SEARCH_PATH, the system searches the directory the specified module was loaded from instead of the directory of the calling process. The system searches these locations in this order:

  1. The package dependency graph of the process. This is the application's package plus any dependencies specified as <PackageDependency> in the <Dependencies> section of the application's package manifest. Dependencies are searched in the order they appear in the manifest.
  2. The directory the specified module was loaded from.
  3. The system directory (%SystemRoot%system32).

Search Order for Desktop Applications

Desktop applications can control the location from which a DLL is loaded by specifying a full path, using DLL redirection, or by using a manifest. If none of these methods are used, the system searches for the DLL at load time as described in this section.

Before the system searches for a DLL, it checks the following:

  • If a DLL with the same module name is already loaded in memory, the system uses the loaded DLL, no matter which directory it is in. The system does not search for the DLL.
  • If the DLL is on the list of known DLLs for the version of Windows on which the application is running, the system uses its copy of the known DLL (and the known DLL's dependent DLLs, if any). The system does not search for the DLL. For a list of known DLLs on the current system, see the following registry key: HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlSession ManagerKnownDLLs.

If a DLL has dependencies, the system searches for the dependent DLLs as if they were loaded with just their module names. This is true even if the first DLL was loaded by specifying a full path.

Important

Docker centos 7 root password

If an attacker gains control of one of the directories that is searched, it can place a malicious copy of the DLL in that directory. For ways to help prevent such attacks, see Dynamic-Link Library Security.

Standard Search Order for Desktop Applications

The standard DLL search order used by the system depends on whether safe DLL search mode is enabled or disabled. Safe DLL search mode places the user's current directory later in the search order.

Safe DLL search mode is enabled by default. To disable this feature, create the HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession ManagerSafeDllSearchMode registry value and set it to 0. Calling the SetDllDirectory function effectively disables SafeDllSearchMode while the specified directory is in the search path and changes the search order as described in this topic.

If SafeDllSearchMode is enabled, the search order is as follows:

  1. The directory from which the application loaded.
  2. The system directory. Use the GetSystemDirectory function to get the path of this directory.
  3. The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched.
  4. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.
  5. The current directory.
  6. The directories that are listed in the PATH environment variable. Note that this does not include the per-application path specified by the App Paths registry key. The App Paths key is not used when computing the DLL search path.

If SafeDllSearchMode is disabled, the search order is as follows:

  1. The directory from which the application loaded.
  2. The current directory.
  3. The system directory. Use the GetSystemDirectory function to get the path of this directory.
  4. The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched.
  5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.
  6. The directories that are listed in the PATH environment variable. Note that this does not include the per-application path specified by the App Paths registry key. The App Paths key is not used when computing the DLL search path.

Alternate Search Order for Desktop Applications

The standard search order used by the system can be changed by calling the LoadLibraryEx function with LOAD_WITH_ALTERED_SEARCH_PATH. The standard search order can also be changed by calling the SetDllDirectory function.

Note

The standard search order of the process will also be affected by calling the SetDllDirectory function in the parent process before start of the current process.

If you specify an alternate search strategy, its behavior continues until all associated executable modules have been located. After the system starts processing DLL initialization routines, the system reverts to the standard search strategy.

The LoadLibraryEx function supports an alternate search order if the call specifies LOAD_WITH_ALTERED_SEARCH_PATH and the lpFileName parameter specifies an absolute path.

Note that the standard search strategy and the alternate search strategy specified by LoadLibraryEx with LOAD_WITH_ALTERED_SEARCH_PATH differ in just one way: The standard search begins in the calling application's directory, and the alternate search begins in the directory of the executable module that LoadLibraryEx is loading.

If SafeDllSearchMode is enabled, the alternate search order is as follows:

  1. The directory specified by lpFileName.
  2. The system directory. Use the GetSystemDirectory function to get the path of this directory.
  3. The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched.
  4. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.
  5. The current directory.
  6. The directories that are listed in the PATH environment variable. Note that this does not include the per-application path specified by the App Paths registry key. The App Paths key is not used when computing the DLL search path.

If SafeDllSearchMode is disabled, the alternate search order is as follows:

  1. The directory specified by lpFileName.
  2. The current directory.
  3. The system directory. Use the GetSystemDirectory function to get the path of this directory.
  4. The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched.
  5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.
  6. The directories that are listed in the PATH environment variable. Note that this does not include the per-application path specified by the App Paths registry key. The App Paths key is not used when computing the DLL search path.

The SetDllDirectory function supports an alternate search order if the lpPathName parameter specifies a path. The alternate search order is as follows:

  1. The directory from which the application loaded.
  2. The directory specified by the lpPathName parameter of SetDllDirectory.
  3. The system directory. Use the GetSystemDirectory function to get the path of this directory. The name of this directory is System32.
  4. The 16-bit system directory. There is no function that obtains the path of this directory, but it is searched. The name of this directory is System.
  5. The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.
  6. The directories that are listed in the PATH environment variable. Note that this does not include the per-application path specified by the App Paths registry key. The App Paths key is not used when computing the DLL search path.

If the lpPathName parameter is an empty string, the call removes the current directory from the search order.

SetDllDirectory effectively disables safe DLL search mode while the specified directory is in the search path. To restore safe DLL search mode based on the SafeDllSearchMode registry value and restore the current directory to the search order, call SetDllDirectory with lpPathName as NULL.

Search Order Using LOAD_LIBRARY_SEARCH Flags

An application can specify a search order by using one or more LOAD_LIBRARY_SEARCH flags with the LoadLibraryEx function. An application can also use LOAD_LIBRARY_SEARCH flags with the SetDefaultDllDirectories function to establish a DLL search order for a process. The application can specify additional directories for the process DLL search order by using the AddDllDirectory or SetDllDirectory functions.

Dynamicdotnettwain.dll

The directories that are searched depend on the flags specified with SetDefaultDllDirectories or LoadLibraryEx. If more than one flag is used, the corresponding directories are searched in the following order:

  1. The directory that contains the DLL (LOAD_LIBRARY_SEARCH_DLL_LOAD_DIR). This directory is searched only for dependencies of the DLL to be loaded.
  2. The application directory (LOAD_LIBRARY_SEARCH_APPLICATION_DIR).
  3. Paths explicitly added with the AddDllDirectory function (LOAD_LIBRARY_SEARCH_USER_DIRS) or the SetDllDirectory function. If more than one path has been added, the order in which the paths are searched is unspecified.
  4. The System directory (LOAD_LIBRARY_SEARCH_SYSTEM32).

If the application does not call LoadLibraryEx with any LOAD_LIBRARY_SEARCH flags or establish a DLL search order for the process, the system searches for DLLs using either the standard search order or the alternate search order.

Related topics

6817.info – 2018